Direct Z-Scheme Heterostructure of In Situ Planted ZnO Nanorods on g-C3N4 Thin Sheets Sprayed on TiO2 Layer: A Strategy for Ternary-Photoanode Engineering toward Enhanced Photoelectrochemical Water Splitting

Ahmed Esmail A. Aboubakr, Mahmoud Kamal Hussien, Amr Sabbah, Ahmed E. Hassan, Mohamed Hammad Elsayed, Zhenhai Wen*, Kuei Hsien Chen, Chen Hsiung Hung*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

15 Scopus citations

Abstract

In this study, we developed an approach to enhance the separation and transfer of charge carriers for photoelectrochemical water splitting in solar-driven hydrogen production. We achieved this by designing a highly efficient Z-scheme TiO2/g-C3N4/ZnO photoanode. The process involved electrodepositing a thin TiO2 layer on FTO and optimizing the in situ ZnO implantation onto g-C3N4. These composites were confirmed by XRD, SEM, EDX, and TEM measurements. The growth of ZnO on g-C3N4 resulted in strong chemical adhesion between the interface of ZnO and g-C3N4, as supported by XPS data, and increased active surface area, as demonstrated by BET. The composition of ZnO and g-C3N4 facilitated rapid charge separation and retarded change recombination through directional charge migration and decreased charge resistance, as evidenced by PEIS and TRPL measurements. Our airbrushing procedure for fabricating the g-C3N4/ZnO composite on TiO2 also enhanced the charge collection efficiency, enabling us to construct a high-performance photoanode. The Z-scheme-type charge migration route was verified by EPR spectroscopy by trapping the radicals generated by charges and holes. PEC-WS measurements showed that TiO2/g-C3N4/ZnO heterostructure improved the produced photocurrent by about 160-, 40-, 20-, 8-, 2-, and 2-fold, relative to pristine g-C3N4, pristine ZnO nanorods, ZnO/g-C3N4 composite, pristine TiO2, TiO2/ZnO, and TiO2/g-C3N4, respectively, versus reversible hydrogen electrode (RHE) at 1.23 V. The charge carriers’ separation and injection measurements showed that the fabrication of this ternary photoanode remarkably improved the PEC-WS performance. DFT results contributed to a deeper understanding of the mechanism of the photocatalytic process and confirmed that the as-fabricated ternary heterojunction promoted the separation/transfer efficiency of the photogenerated charge carriers, thereby promoting the activity of the photocatalytic process. This work could pave the way for better fabrication of ternary-based photoanodes.

Original languageEnglish
Pages (from-to)906-918
Number of pages13
JournalACS Applied Energy Materials
Volume7
Issue number3
DOIs
StatePublished - 12 Feb 2024
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2024 American Chemical Society.

ASJC Scopus subject areas

  • Chemical Engineering (miscellaneous)
  • Energy Engineering and Power Technology
  • Electrochemistry
  • Materials Chemistry
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Direct Z-Scheme Heterostructure of In Situ Planted ZnO Nanorods on g-C3N4 Thin Sheets Sprayed on TiO2 Layer: A Strategy for Ternary-Photoanode Engineering toward Enhanced Photoelectrochemical Water Splitting'. Together they form a unique fingerprint.

Cite this