Abstract
Autonomous underwater robots provide opportunities to perform missions in confined environments such as water pipe networks. They can carry sensors in these pipes and perform tasks such as mapping and inspection. Those robots must have a high level of maneuverability in order to navigate through complex networks of pipes with irregularities due to rust and calcite deposition. We propose a fully integrated, untethered robot capable of carrying sensors and maneuver into water pipe networks. The objective of this paper is to present (i) the optimal shape design and (ii) a propulsion system selection and sizing procedure for such robots. A prototype is built to demonstrate the basic elements of maneuverability, including following straight lines and making sharp turns.
Original language | English |
---|---|
Title of host publication | IROS Hamburg 2015 - Conference Digest |
Subtitle of host publication | IEEE/RSJ International Conference on Intelligent Robots and Systems |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 4864-4871 |
Number of pages | 8 |
ISBN (Electronic) | 9781479999941 |
DOIs | |
State | Published - 11 Dec 2015 |
Publication series
Name | IEEE International Conference on Intelligent Robots and Systems |
---|---|
Volume | 2015-December |
ISSN (Print) | 2153-0858 |
ISSN (Electronic) | 2153-0866 |
Bibliographical note
Publisher Copyright:© 2015 IEEE.
ASJC Scopus subject areas
- Control and Systems Engineering
- Software
- Computer Vision and Pattern Recognition
- Computer Science Applications