Abstract
In the present study, the performance parameters of GaAsN dilute nitride-based semiconductor solar cell with and without AlGaAs blocking layers have been investigated in detail by Solar Cell Capacitance Simulator in one dimensional software program (SCAPS-1D). The thickness of absorber, buffer, and blocking layers are varied to achieve the improvement of open circuit voltage, short circuit current, fill factor, efficiency and also to optimize the device structure. The impact of doping and defect densities on the solar cell performance parameters have been analyzed minutely inside the absorber, buffer, and blocking layers. The solar cell thermal stability parameters are also investigated in the temperature region from 273K to 373K. The efficiency of 43.90% and 40.05% are obtained from the proposed solar cells with and without AlGaAs blocking layer, respectively. The present findings may provide insightful approach for fabricating feasible, cost effective, and efficient dilute nitride solar cell.
Original language | English |
---|---|
Article number | 085006 |
Journal | Physica Scripta |
Volume | 97 |
Issue number | 8 |
DOIs | |
State | Published - 1 Aug 2022 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2022 IOP Publishing Ltd.
Keywords
- SRH recombination
- carrier lifetime
- efficiency
- performance parameters
- photo-generated carriers
ASJC Scopus subject areas
- Atomic and Molecular Physics, and Optics
- Mathematical Physics
- Condensed Matter Physics