TY - JOUR
T1 - CRISPRidentify
T2 - Identification of CRISPR arrays using machine learning approach
AU - Mitrofanov, Alexander
AU - Alkhnbashi, Omer S.
AU - Shmakov, Sergey A.
AU - Makarova, Kira S.
AU - Koonin, Eugene V.
AU - Backofen, Rolf
N1 - Publisher Copyright:
© 2021 The Author(s) 2020.
PY - 2021/2/26
Y1 - 2021/2/26
N2 - CRISPR-Cas are adaptive immune systems that degrade foreign genetic elements in archaea and bacteria. In carrying out their immune functions, CRISPR-Cas systems heavily rely on RNA components. These CRISPR (cr) RNAs are repeat-spacer units that are produced by processing of pre-crRNA, the transcript of CRISPR arrays, and guide Cas protein(s) to the cognate invading nucleic acids, enabling their destruction. Several bioinformatics tools have been developed to detect CRISPR arrays based solely on DNA sequences, but all these tools employ the same strategy of looking for repetitive patterns, which might correspond to CRISPR array repeats. The identified patterns are evaluated using a fixed, built-in scoring function, and arrays exceeding a cut-off value are reported. Here, we instead introduce a data-driven approach that uses machine learning to detect and differentiate true CRISPR arrays from false ones based on several features. Our CRISPR detection tool, CRISPRidentify, performs three steps: detection, feature extraction and classification based on manually curated sets of positive and negative examples of CRISPR arrays. The identified CRISPR arrays are then reported to the user accompanied by detailed annotation. We demonstrate that our approach identifies not only previously detected CRISPR arrays, but also CRISPR array candidates not detected by other tools. Compared to other methods, our tool has a drastically reduced false positive rate. In contrast to the existing tools, our approach not only provides the user with the basic statistics on the identified CRISPR arrays but also produces a certainty score as a practical measure of the likelihood that a given genomic region is a CRISPR array.
AB - CRISPR-Cas are adaptive immune systems that degrade foreign genetic elements in archaea and bacteria. In carrying out their immune functions, CRISPR-Cas systems heavily rely on RNA components. These CRISPR (cr) RNAs are repeat-spacer units that are produced by processing of pre-crRNA, the transcript of CRISPR arrays, and guide Cas protein(s) to the cognate invading nucleic acids, enabling their destruction. Several bioinformatics tools have been developed to detect CRISPR arrays based solely on DNA sequences, but all these tools employ the same strategy of looking for repetitive patterns, which might correspond to CRISPR array repeats. The identified patterns are evaluated using a fixed, built-in scoring function, and arrays exceeding a cut-off value are reported. Here, we instead introduce a data-driven approach that uses machine learning to detect and differentiate true CRISPR arrays from false ones based on several features. Our CRISPR detection tool, CRISPRidentify, performs three steps: detection, feature extraction and classification based on manually curated sets of positive and negative examples of CRISPR arrays. The identified CRISPR arrays are then reported to the user accompanied by detailed annotation. We demonstrate that our approach identifies not only previously detected CRISPR arrays, but also CRISPR array candidates not detected by other tools. Compared to other methods, our tool has a drastically reduced false positive rate. In contrast to the existing tools, our approach not only provides the user with the basic statistics on the identified CRISPR arrays but also produces a certainty score as a practical measure of the likelihood that a given genomic region is a CRISPR array.
UR - https://www.scopus.com/pages/publications/85102399739
U2 - 10.1093/nar/gkaa1158
DO - 10.1093/nar/gkaa1158
M3 - Article
C2 - 33290505
AN - SCOPUS:85102399739
SN - 0305-1048
VL - 49
JO - Nucleic Acids Research
JF - Nucleic Acids Research
IS - 4
M1 - e20
ER -