Could climate change exacerbate droughts in Bangladesh in the future?

Mahfuzur Rahman*, Md Sakib Hasan Tumon, Md Monirul Islam, Ningsheng Chen, Quoc Bao Pham, Kashif Ullah, Sumaiya Jarin Ahammed, Sharmina Naznin Liza, Md Abdul Aziz, Salit Chakma, Muhammad Esmat Enan, Md Alomgir Hossain, Tian Shufeng, Ashraf Dewan

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

Droughts are one of the most complex, common, and catastrophic natural disasters, causing severe damage to agriculture and the economy. However, drought susceptibility must be measured and predicted in a systematic way, especially in light of potential climate change scenarios. This study aimed to predict current and future drought susceptibility in Bangladesh using historical climate data (1991–2020) and coupled model intercomparison project 6 data for three seasons: pre-monsoon, monsoon, and post-monsoon. We applied an advanced machine-learning algorithm of artificial neural network (ANN) with a genetic algorithm (GA) optimizer to predict drought-prone areas. Nine hydrological parameters–rainfall, temperature, humidity, cloud coverage, wind speed, sunshine, potential evapotranspiration, and solar radiation–were used to develop drought susceptibility maps. Receiver operating characteristic curves and statistical metrics were used to validate the models. The results of a multilayer perceptron ANN coupled with a GA-based optimizer showed that the relevant statistical measures for training and testing datasets were the root mean square error (RMSE = 0.127 and 0.160) and coefficient of determination (R2 = 0.967 and 0.949) for the pre-monsoon season, monsoon season (RMSE = 0.023 and 0.035; R2 = 0.998 and 0.997), and post-monsoon season (RMSE = 0.083 and 0.142; R2 = 0.986 and 0.959), respectively. Further, drought-prone areas in the baseline drought period of 2020 for pre-monsoon season represented 23.86%, 14.24%, 12.85%, 29.92%, and 19.13% of the total area, respectively; similarly, for monsoon corresponding values were 1.83%, 44.18%, 4.99%, 8.76%, and 40.24%; and for post-monsoon drought they were 24.43%, 20.94%, 16.04%, 37.79%, and 0.80% of the total landmass of Bangladesh. These results can help reduce future drought impacts and be of value in assisting policy responses in the country.

Original languageEnglish
Article number130096
JournalJournal of Hydrology
Volume625
DOIs
StatePublished - Oct 2023
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2023 Elsevier B.V.

Keywords

  • Artificial neural network
  • Bangladesh
  • Coupled model intercomparison project 6
  • Drought
  • Genetic algorithm
  • Multilayer perceptron

ASJC Scopus subject areas

  • Water Science and Technology

Fingerprint

Dive into the research topics of 'Could climate change exacerbate droughts in Bangladesh in the future?'. Together they form a unique fingerprint.

Cite this