Abstract
Copper (II) oxide in varying ratios was combined with either an alumina-based cement (Al300), or CaO derived from limestone as support material in a mechanical pelletiser. This production method was used to investigate its influence on possible mechanical and chemical improvements for oxygen carriers in chemical looping processes. These materials were tested in a lab-scale fluidised bed with CO or CH4 as a reducing gas at 950 °C. As expected, the oxygen carriers containing a greater ratio of support material exhibited an enhanced crushing strength. Oxygen carriers comprised of a 1:3 ratio of support material to active CuO exhibited increased crushing strength by a minimum of 280% compared to pure CuO pellets. All oxygen carriers exhibited a high CO conversion yield and were fully reducible from CuO to Cu. For the initial redox cycle, Al300-supported oxygen carriers showed the highest fuel and oxygen carrier conversion. The general trend observed was a decline in conversion with an increasing number of redox cycles. In the case of CaO-supported oxygen carriers, all but one of the oxygen carriers suffered agglomeration. The agglomeration was more severe in carriers with higher ratios of CuO. Oxygen carrier Cu25Al75 (75 wt% aluminate cement and 25 wt% CuO), which did not suffer from agglomeration, showed the highest attrition with a loss of approximately 8% of its initial mass over 25 redox cycles. The reducibility of the oxygen carriers was limited with CH4 in comparison to CO. CH4 conversion were 15%–25% and 50% for Cu25Ca75 (25 wt% CuO and 75 wt% CaO) and Cu25Al75, respectively. Cu25Ca75 demonstrated improved conversion, whereas Cu25Al75 exhibited a trending decrease in conversion with increasing redox cycles.
| Original language | English |
|---|---|
| Pages (from-to) | 891-901 |
| Number of pages | 11 |
| Journal | Journal of Energy Chemistry |
| Volume | 26 |
| Issue number | 5 |
| DOIs | |
| State | Published - Nov 2017 |
| Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2017 Science Press
Keywords
- Carbon capture
- Chemical-looping
- Copper
- Oxygen carrier
ASJC Scopus subject areas
- Fuel Technology
- Energy Engineering and Power Technology
- Energy (miscellaneous)
- Electrochemistry