Convolutional Neural Network for Histopathological Osteosarcoma Image Classification

Imran Ahmed*, Humaira Sardar, Hanan Aljuaid, Fakhri Alam Khan, Muhammad Nawaz, Adnan Awais

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

Osteosarcoma is one of the most widespread causes of bone cancer globally and has a high mortality rate. Early diagnosis may increase the chances of treatment and survival however the process is time-consuming (reliability and complexity involved to extract the hand-crafted features) and largely depends on pathologists’ experience. Convolutional Neural Network (CNN—an end-to-end model) is known to be an alternative to overcome the aforesaid problems. Therefore, this work proposes a compact CNN architecture that has been rigorously explored on a Small Osteosarcoma histology Image Dataaseet (a high-class imbalanced dataset). Though, during training, class-imbalanced data can negatively affect the performance of CNN. Therefore, an oversampling technique has been proposed to overcome the aforesaid issue and improve generalization performance. In this process, a hierarchical CNN model is designed, in which the former model is non-regularized (due to dense architecture) and the later one is regularized, specifically designed for small histopathology images. Moreover, the regularized model is integrated with CNN’s basic architecture to reduce overfitting. Experimental results demonstrate that oversampling might be an effective way to address the imbalanced class problem during training. The training and testing accuracies of the non-regularized CNN model are 98% & 78% with an imbalanced dataset and 96% & 81% with a balanced dataset, respectively. The regularized CNN model training and testing accuracies are 84% & 75% for an imbalanced dataset and 87% & 86% for a balanced dataset.

Original languageEnglish
Pages (from-to)3365-3381
Number of pages17
JournalComputers, Materials and Continua
Volume69
Issue number3
DOIs
StatePublished - 2021
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2021 Tech Science Press. All rights reserved.

Keywords

  • Computer-aided diagnosis
  • Convolutional neural network
  • Histopathological image classification
  • Osteosarcoma

ASJC Scopus subject areas

  • Biomaterials
  • Modeling and Simulation
  • Mechanics of Materials
  • Computer Science Applications
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Convolutional Neural Network for Histopathological Osteosarcoma Image Classification'. Together they form a unique fingerprint.

Cite this