CodeAgent: Autonomous Communicative Agents for Code Review

Xunzhu Tang, Kisub Kim, Yewei Song, Cedric Lothritz, Bei Li, Saad Ezzini, Haoye Tian*, Jacques Klein, Tegawendé F. Bissyandé

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

Code review, which aims at ensuring the overall quality and reliability of software, is a cornerstone of software development. Unfortunately, while crucial, Code review is a labor-intensive process that the research community is looking to automate. Existing automated methods rely on single input-output generative models and thus generally struggle to emulate the collaborative nature of code review. This work introduces CodeAgent, a novel multiagent Large Language Model (LLM) system for code review automation. CodeAgent incorporates a supervisory agent, QA-Checker, to ensure that all the agents' contributions address the initial review question. We evaluated CodeAgent on critical code review tasks: (1) detect inconsistencies between code changes and commit messages, (2) identify vulnerability introductions, (3) validate code style adherence, and (4) suggest code revision. The results demonstrate CodeAgent's effectiveness, contributing to a new state-of-the-art in code review automation. Our data and code are publicly available (https://github.com/Daniel4SE/codeagent).

Original languageEnglish
Title of host publicationEMNLP 2024 - 2024 Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference
EditorsYaser Al-Onaizan, Mohit Bansal, Yun-Nung Chen
PublisherAssociation for Computational Linguistics (ACL)
Pages11279-11313
Number of pages35
ISBN (Electronic)9798891761643
DOIs
StatePublished - 2024
Externally publishedYes
Event2024 Conference on Empirical Methods in Natural Language Processing, EMNLP 2024 - Hybrid, Miami, United States
Duration: 12 Nov 202416 Nov 2024

Publication series

NameEMNLP 2024 - 2024 Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference

Conference

Conference2024 Conference on Empirical Methods in Natural Language Processing, EMNLP 2024
Country/TerritoryUnited States
CityHybrid, Miami
Period12/11/2416/11/24

Bibliographical note

Publisher Copyright:
© 2024 Association for Computational Linguistics.

ASJC Scopus subject areas

  • Computational Theory and Mathematics
  • Computer Science Applications
  • Information Systems
  • Linguistics and Language

Fingerprint

Dive into the research topics of 'CodeAgent: Autonomous Communicative Agents for Code Review'. Together they form a unique fingerprint.

Cite this