TY - JOUR
T1 - Co-precipitated vanadium oxide-doped carbon spheres and graphene oxide nanorods serve as antimicrobial and catalytic agents
T2 - In silico molecular docking study
AU - Ikram, Muhammad
AU - Shahid Ali, Muhammad
AU - Haider, Ali
AU - Shahzadi, Iram
AU - Mustajab, Muhammad
AU - Ul-Hamid, Anwar
AU - Shahzadi, Anum
AU - Nabgan, Walid
AU - Algaradah, Mohammed M.
AU - Fouda, Ahmed M.
AU - Ali, Salamat
N1 - Publisher Copyright:
© 2023 The Authors
PY - 2023/10/25
Y1 - 2023/10/25
N2 - Undoped V2O5 is characterized by a small surface area and rapid electron-hole recombination, thus rendering it ineffective as a catalytic and antimicrobial agent. In this study, co-precipitation was employed to synthesize vanadium oxide (V2O5) and carbon spheres (CS) followed by doping with specific concentrations (3 and 6 wt%) of graphene oxide (GO) to produce GO/CS-doped V2O5 nanorods (NRs). The enhancement in catalytic and antibacterial activity provided by GO/CS-doped V2O5 was utilized to treat wastewater more efficiently. XRD analysis validated the orthorhombic and tetragonal structure of the synthesized samples. The polycrystalline nature of V2O5 was shown by vibrant circular rings in selected area electron diffraction (SAED) micrographs. TEM analysis endorsed formation of NRs, whereas UV–vis, luminescence (PL) and fourier transform infrared spectroscopy (FTIR), probed the absorption and emission along with stretching and bending vibrations in V-O-V bond. The chemically synthesized NRs exhibited excellent catalytic activity (93.71%) against rhodamine B (RhB) dye in the vicinity of NaBH4. In addition, NRs were used to evaluate in-vitro antimicrobial efficiency of 3.75 mmfor Escherichia coli (E. coli) using inhibition zone measurement. Docking investigations of GO/CS-V2O5 NRs for FabH and FabI of E. coli suggested suppression of above-mentioned enzymes as a possible mechanism. These findings demonstrate that (3 and 6 wt%) GO/CS-V2O5 possessed ample potency for industrial dye degradation and antimicrobial activity.
AB - Undoped V2O5 is characterized by a small surface area and rapid electron-hole recombination, thus rendering it ineffective as a catalytic and antimicrobial agent. In this study, co-precipitation was employed to synthesize vanadium oxide (V2O5) and carbon spheres (CS) followed by doping with specific concentrations (3 and 6 wt%) of graphene oxide (GO) to produce GO/CS-doped V2O5 nanorods (NRs). The enhancement in catalytic and antibacterial activity provided by GO/CS-doped V2O5 was utilized to treat wastewater more efficiently. XRD analysis validated the orthorhombic and tetragonal structure of the synthesized samples. The polycrystalline nature of V2O5 was shown by vibrant circular rings in selected area electron diffraction (SAED) micrographs. TEM analysis endorsed formation of NRs, whereas UV–vis, luminescence (PL) and fourier transform infrared spectroscopy (FTIR), probed the absorption and emission along with stretching and bending vibrations in V-O-V bond. The chemically synthesized NRs exhibited excellent catalytic activity (93.71%) against rhodamine B (RhB) dye in the vicinity of NaBH4. In addition, NRs were used to evaluate in-vitro antimicrobial efficiency of 3.75 mmfor Escherichia coli (E. coli) using inhibition zone measurement. Docking investigations of GO/CS-V2O5 NRs for FabH and FabI of E. coli suggested suppression of above-mentioned enzymes as a possible mechanism. These findings demonstrate that (3 and 6 wt%) GO/CS-V2O5 possessed ample potency for industrial dye degradation and antimicrobial activity.
KW - Antimicrobial activity
KW - Co-precipitation
KW - Molecular docking analysis
KW - Rhodamine B degradation
KW - Vanadium oxide
UR - http://www.scopus.com/inward/record.url?scp=85163820347&partnerID=8YFLogxK
U2 - 10.1016/j.jallcom.2023.171045
DO - 10.1016/j.jallcom.2023.171045
M3 - Article
AN - SCOPUS:85163820347
SN - 0925-8388
VL - 961
JO - Journal of Alloys and Compounds
JF - Journal of Alloys and Compounds
M1 - 171045
ER -