Characteristics of hydrogen separation and methane steam reforming in a Pd-based membrane reactor of shell and tube design

Medhat A. Nemitallah*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

This work investigates numerically the characteristics of the two process, hydrogen separation and steam methane reforming (SMR), in a palladium-based (Inconel-supported Pd–Ag film) membrane reactor (MR) of porous reformer (30% Ni/Al2O3) shell and multi-tube design. Still parameters like reactor design and temperature, feed gas concentration and pressure, and flow configuration need more investigation to figure out their impact on hydrogen production rate at lower energy cost and minimum possible volume. This work targets optimization of reactor performance for higher hydrogen yield and coming up with a scalable optimized reactor design for industrial applications. First, an optimization study is performed under non-reforming (separation-only) conditions to optimize the MR design and operating parameters for higher hydrogen production. Then, the study is extended to consider hydrogen separation under SMR conditions to come up with a MR design for hydrogen production at the industrial scale. Hydrogen permeation is limited to small zone near the membrane surface with no effect of feed pressure, inlet gas temperature, and feed hydrogen concentration on widening such zone that necessitates reducing the pitch distance between membrane tubes below 22 mm. The results showed reduced hydrogen permeation rate under SMR conditions compared to the separation-only cases.

Original languageEnglish
Article number102939
JournalCase Studies in Thermal Engineering
Volume45
DOIs
StatePublished - May 2023

Bibliographical note

Publisher Copyright:
© 2023 The Author

Keywords

  • CFD modeling
  • Hydrogen separation
  • Membrane reactor
  • Pd-based membranes
  • Porous reactor
  • Steam methane reforming

ASJC Scopus subject areas

  • Engineering (miscellaneous)
  • Fluid Flow and Transfer Processes

Fingerprint

Dive into the research topics of 'Characteristics of hydrogen separation and methane steam reforming in a Pd-based membrane reactor of shell and tube design'. Together they form a unique fingerprint.

Cite this