Cesium immobilization of high pH and low pH belite-rich cement under varying temperature

Raju Sharma, Kunal Krishna Das, Salman Siddique, Jeong Gook Jang*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Low-pH cement is being studied in radioactive waste repositories. The belite-rich cement (BRC) recently gained attention due to its higher CO2 sequestration and low pH attainment under carbonation exposure. Therefore, this study evaluated the effects of pH and temperature on cesium immobilization of BRC. High pH (12.6) and low pH (9.9) BRC were produced via air curing and carbonation treatment, respectively. The high and low pH BRC samples were placed in a leaching environment at 25 °C and 45 °C for 90 days. An inverse correlation between pH and cesium mobilization of BRC was observed. The high pH BRC achieved the lowest effective diffusion coefficient (4.05E-09 cm2/s), whereas the highest value (2.64E-07 cm2/s) was achieved in case of low pH BRC. The physicochemical and morphological properties unveiled the decrease in Si/Ca ratio of gel, precipitation of Ca2+ ions in calcite formation, and increment in pore structure connectivity (pore size > 100 nm) in low pH BRC. However, the high pH BRC demonstrated the high Si/Ca ratio in C-S-H gel, hydroxide phases and higher disconnected pores. Thermodynamic modeling revealed the presence of significant carbonated phases beyond 15% CO2 uptake. The findings contributed to the BRC's feasibility in developing nuclear waste storage facility.

Original languageEnglish
Article number133995
JournalJournal of Hazardous Materials
Volume469
DOIs
StatePublished - 5 May 2024

Bibliographical note

Publisher Copyright:
© 2024 Elsevier B.V.

Keywords

  • Belite rich cement
  • Cesium
  • Leaching
  • PH
  • Radioactive nuclides

ASJC Scopus subject areas

  • Environmental Engineering
  • Environmental Chemistry
  • Waste Management and Disposal
  • Pollution
  • Health, Toxicology and Mutagenesis

Fingerprint

Dive into the research topics of 'Cesium immobilization of high pH and low pH belite-rich cement under varying temperature'. Together they form a unique fingerprint.

Cite this