CBLSTM-AE: A Hybrid Deep Learning Framework for Predicting Energy Consumption

Olamide Jogunola, Bamidele Adebisi, Khoa Van Hoang, Yakubu Tsado, Segun I. Popoola, Mohammad Hammoudeh*, Raheel Nawaz

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

47 Scopus citations

Abstract

Multisource energy data, including from distributed energy resources and its multivariate nature, necessitate the integration of robust data predictive frameworks to minimise prediction error. This work presents a hybrid deep learning framework to accurately predict the energy consumption of different building types, both commercial and domestic, spanning different countries, including Canada and the UK. Specifically, we propose architectures comprising convolutional neural network (CNN), an autoencoder (AE) with bidirectional long short-term memory (LSTM), and bidirectional LSTM BLSTM). The CNN layer extracts important features from the dataset and the AE-BLSTM and LSTM layers are used for prediction. We use the individual household electric power consumption dataset from the University of California, Irvine to compare the skillfulness of the proposed framework to the state-of-the-art frameworks. Results show performance improvement in computation time of 56% and 75.2%, and mean squared error (MSE) of 80% and 98.7% in comparison with a CNN BLSTM-based framework (EECP-CBL) and vanilla LSTM, respectively. In addition, we use various datasets from Canada and the UK to further validate the generalisation ability of the proposed framework to underfitting and overfitting, which was tested on real consumers’ smart boxes. The results show that the framework generalises well to varying data and constraints, giving an average MSE of ∼0.09 across all datasets, demonstrating its robustness to different building types, locations, weather, and load distributions.

Original languageEnglish
Article number810
JournalEnergies
Volume15
Issue number3
DOIs
StatePublished - 1 Feb 2022

Bibliographical note

Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.

Keywords

  • Autoencoder
  • Bidirectional long short-term memory
  • Convolutional neural network
  • Energy consumption prediction
  • Hybrid deep learning

ASJC Scopus subject areas

  • Renewable Energy, Sustainability and the Environment
  • Fuel Technology
  • Engineering (miscellaneous)
  • Energy Engineering and Power Technology
  • Energy (miscellaneous)
  • Control and Optimization
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'CBLSTM-AE: A Hybrid Deep Learning Framework for Predicting Energy Consumption'. Together they form a unique fingerprint.

Cite this