Bulk modulus of hydrocarbon fluids after injection with supercritical CO2 at reservoir conditions

Mohamed Eid Kandil*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

The mechanical properties of hydrocarbon reservoirs significantly depend on the elastic properties of the fluids occupying the pore space in the rock frame. Accurate data and models for the mechanical properties of fluid mixtures in a petroleum reservoir containing supercritical CO2 should be available at the same reservoir conditions for reliable design of well-completion, maximizing reservoir productivity, and minimizing risk in drilling operations. This work investigates the change in the bulk modulus of the higher hydrocarbon fluid (decane C10H22) after the injection with supercritical CO2 at reservoir conditions. The isothermal bulk modulus βT of liquids under pressure, simply defined as the first-order derivative of pressure with respect to volume, is determined in this study from the derivative of pressure with respect to density. The density data were obtained from experimental measurements of mixtures of supercritical CO2 + C10H22 for a range of CO2 mole fractions from 0 to 0.73, at temperatures from 40 to 137 °C and pressures up to 12000 psi. The isothermal derivative coefficients of the pressure as a function of density are reported for each CO2 concentration measured in this work. Common fluid-substitution models, including the Gassmann model, which is only valid for the isothermal regime, have limited predictive power because most fluids are treated as simple fluids, with their mechanical properties only characterized by their densities. However, under different environments, such as when supercritical CO2 is injected into the geological formation, the fluid phase and its mechanical properties can vary dramatically. At high pressure, the density of CO2 can equal to that of the hydrocarbon phase ρ(CO2)/ρ(C10H22) ≈ 1, while the bulk modulus of CO2 remains as low as only βT(CO2)/βT(C10H22) ≈ 7 %. Excessive decrease in the bulk modulus can easily cause subsidence, although the pore pressure and the fluid mixture density remain unchanged, even at pressures up to 4000 psi.

Original languageEnglish
Title of host publicationSociety of Petroleum Engineers - SPE Annual Technical Conference and Exhibition 2021, ATCE 2021
PublisherSociety of Petroleum Engineers (SPE)
ISBN (Electronic)9781613997864
DOIs
StatePublished - 2021

Publication series

NameProceedings - SPE Annual Technical Conference and Exhibition
Volume2021-September
ISSN (Electronic)2638-6712

Bibliographical note

Publisher Copyright:
© 2021, Society of Petroleum Engineers

ASJC Scopus subject areas

  • Fuel Technology
  • Energy Engineering and Power Technology

Fingerprint

Dive into the research topics of 'Bulk modulus of hydrocarbon fluids after injection with supercritical CO2 at reservoir conditions'. Together they form a unique fingerprint.

Cite this