Binary CoNi and Ternary FeCoNi Alloy Thin Films as High-Performance and Stable Electrocatalysts for Oxygen Evolution Reaction

Muhammad Ali Ehsan, Abuzar Khan*, Abbas Saeed Hakeem

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

2 Scopus citations


To improve the efficiency of electrochemical water splitting and oxygen evolution reactions (OER), it is essential to develop thin film electrocatalysts that are highly active, extremely stable, and based on non-noble metals. Most of the existing electrocatalysts are nano powders or costly electrode materials that require complex synthesis methods, which limit their practical application in water splitting. In this study, we show that a simple AACVD process can produce high-performance OER catalysts from binary CoNi and ternary FeCoNi alloy thin films on nickel foam substrates. The ternary FeCoNi thin films obtained after 2 h deposition have a three-dimensional flower-like morphology, which enhances the contact with the electrolyte and exposes more active sites for the OER. As a result, the OER activity in alkaline medium is improved, achieving a lower potential of 1.49 V vs RHE (260 mV overpotential at 10 mA cm-2) and a higher current density of 1.8 A cm-2 at a lower voltage of 1.69 V vs RHE. A small Tafel slope value of 41 mV dec-1 and excellent long-term stability, with no significant decay in current density for 96 h of chronoamperometric testing, demonstrate the superior performance of the FeCoNi-2h catalyst, compared to state-of-the-art RuO2 and various FeCoNi-based transition metal catalysts. This work provides a promising strategy for developing thin film electrocatalysts based on low-cost and transition metals that can greatly enhance oxygen evolution performance.

Original languageEnglish
Pages (from-to)9556-9567
Number of pages12
JournalACS Applied Energy Materials
Issue number18
StatePublished - 25 Sep 2023

Bibliographical note

Publisher Copyright:
© 2023 American Chemical Society.


  • FeCoNi
  • Ni foam, nanoflower
  • alloy
  • chemical vapor deposition
  • oxygen evolution reaction

ASJC Scopus subject areas

  • Chemical Engineering (miscellaneous)
  • Energy Engineering and Power Technology
  • Electrochemistry
  • Materials Chemistry
  • Electrical and Electronic Engineering


Dive into the research topics of 'Binary CoNi and Ternary FeCoNi Alloy Thin Films as High-Performance and Stable Electrocatalysts for Oxygen Evolution Reaction'. Together they form a unique fingerprint.

Cite this