Abstract
Sensitive As(III) detection in ground water is of great importance for evaluating the quality of drinking water. We report a sensitive electrochemical method for As(III) detection based on electrochemical–chemical–chemical (ECC) redox cycling involving Ru(IV) [an oxidized species of RuIII(NH3)5NH22+], As(III), and tris(3-carboxyethyl)phosphine (TCEP). Electrochemical oxidation of RuIII(NH3)5NH22+ formed from RuIII(NH3)63+ generates Ru(IV), which quickly oxidizes As(III). This electro-mediated oxidation of As(III) produces As(v), which is reduced back to As(III) by TCEP. Electrochemically generated Ru(IV) then reoxidizes As(III), allowing ECC redox cycling to occur at a high rate on bare indium-tin oxide (ITO) electrodes without modifying the surfaces with electrocatalytic materials. Because most interfering metal ions precipitate in a carbonate buffer, water samples are mixed with carbonate buffers prior to electrochemical measurements, rendering the effects of Cu+, Cu2+, Fe2+, Fe3+, and Pb2+ insignificant. The detection limit calculated by ECC redox cycling using a chronocoulogram is 1.2 μM, much lower than that obtained using only the electro-mediated oxidation of As(III) (90 μM).
Original language | English |
---|---|
Pages (from-to) | 5813-5817 |
Number of pages | 5 |
Journal | The Analyst |
Volume | 139 |
Issue number | 22 |
DOIs | |
State | Published - 15 Oct 2014 |
Externally published | Yes |
ASJC Scopus subject areas
- Analytical Chemistry
- Biochemistry
- Environmental Chemistry
- Spectroscopy
- Electrochemistry