Are Supervised Learning Methods Suitable for Estimating Crop Water Consumption under Optimal and Deficit Irrigation?

Sevim Seda Yamaç*, Bedri Kurtuluş, Azhar M. Memon, Gadir Alomair, Mladen Todorovic

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

This study examined the performance of random forest (RF), support vector machine (SVM) and adaptive boosting (AB) machine learning models used to estimate daily potato crop evapotranspiration adjusted (ETc-adj) under full irrigation (I100), 50% of full irrigation supply (I50) and rainfed cultivation (I0). Five scenarios of weather, crop and soil data availability were considered: (S1) reference evapotranspiration and precipitation, (S2) S1 and crop coefficient, (S3) S2, the fraction of total available water and root depth, (S4) S2 and total soil available water, and (S5) S3 and total soil available water. The performance of machine learning models was compared with the standard FAO56 calculation procedure. The most accurate ETc-adj estimates were observed with AB4 for I100, RF3 for I50 and AB5 for I0 with coefficients of determination (R2) of 0.992, 0.816 and 0.922, slopes of 1.004, 0.999 and 0.972, modelling efficiencies (EF) of 0.992, 0.815 and 0.917, mean absolute errors (MAE) of 0.125, 0.405 and 0.241 mm day−1, root mean square errors (RMSE) of 0.171, 0.579 and 0.359 mm day−1 and mean squared errors (MSE) of 0.029, 0.335 and 0.129 mm day−1, respectively. The AB model is suggested for ETc-adj prediction under I100 and I0 conditions, while the RF model is recommended under the I50 condition.

Original languageEnglish
Article number532
JournalAgronomy
Volume14
Issue number3
DOIs
StatePublished - Mar 2024

Bibliographical note

Publisher Copyright:
© 2024 by the authors.

Keywords

  • adaptive boosting
  • irrigation
  • machine learning
  • random forest
  • support vector machine
  • water stress

ASJC Scopus subject areas

  • Agronomy and Crop Science

Fingerprint

Dive into the research topics of 'Are Supervised Learning Methods Suitable for Estimating Crop Water Consumption under Optimal and Deficit Irrigation?'. Together they form a unique fingerprint.

Cite this