Application of Advanced Optimized Soft Computing Models for Atmospheric Variable Forecasting

Rana Muhammad Adnan, Sarita Gajbhiye Meshram, Reham R. Mostafa, Abu Reza Md Towfiqul Islam*, S. I. Abba, Francis Andorful, Zhihuan Chen*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

6 Scopus citations


Precise Air temperature modeling is crucial for a sustainable environment. In this study, a novel binary optimized machine learning model, the random vector functional link (RVFL) with the integration of Moth Flame Optimization Algorithm (MFO) and Water Cycle Optimization Algorithm (WCA) is examined to estimate the monthly and daily temperature time series of Rajshahi Climatic station in Bangladesh. Various combinations of temperature and precipitation were used to predict the temperature time series. The prediction ability of the novel binary optimized machine learning model (RVFL-WCAMFO) is compared with the single optimized machine learning models (RVFL-WCA and RVFL-MFO) and the standalone machine learning model (RVFL). Root mean square errors (RMSE), the mean absolute error (MAE), the Nash–Sutcliffe efficiency (NSE), and the determination coefficient (R2) statistical indexes were utilized to access the prediction ability of the selected models. The proposed binary optimized machine learning model (RVFL-WCAMFO) outperformed the other single optimized and standalone machine learning models in prediction of air temperature time series on both scales, i.e., daily and monthly scale. Cross-validation technique was applied to determine the best testing dataset and it was found that the M3 dataset provided more accurate results for the monthly scale, whereas the M1 dataset outperformed the other two datasets on the daily scale. On the monthly scale, periodicity input was also added to see the effect on prediction accuracy. It was found that periodicity input improved the prediction accuracy of the models. It was also found that precipitation-based inputs did not provided very accurate results in comparison to temperature-based inputs. The outcomes of the study recommend the use of RVFL-WCAMFO in air temperature modeling.

Original languageEnglish
Article number1213
Issue number5
StatePublished - Mar 2023

Bibliographical note

Publisher Copyright:
© 2023 by the authors.


  • hybrid modeling
  • machine learning
  • moth flame optimization (MFO)
  • random vector functional link (RVFL)
  • water cycle algorithm (WCA)

ASJC Scopus subject areas

  • Computer Science (miscellaneous)
  • Mathematics (all)
  • Engineering (miscellaneous)


Dive into the research topics of 'Application of Advanced Optimized Soft Computing Models for Atmospheric Variable Forecasting'. Together they form a unique fingerprint.

Cite this