AI-based Question Answering Assistance for Analyzing Natural-language Requirements

Saad Ezzini*, Sallam Abualhaija*, Chetan Arora, Mehrdad Sabetzadeh

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

20 Scopus citations

Abstract

By virtue of being prevalently written in natural language (NL), requirements are prone to various defects, e.g., inconsistency and incompleteness. As such, requirements are frequently subject to quality assurance processes. These processes, when carried out entirely manually, are tedious and may further overlook important quality issues due to time and budget pressures. In this paper, we propose QAssist - a question-answering (QA) approach that provides automated assistance to stakeholders, including requirements engineers, during the analysis of NL requirements. Posing a question and getting an instant answer is beneficial in various quality-assurance scenarios, e.g., incompleteness detection. Answering requirements-related questions automatically is challenging since the scope of the search for answers can go beyond the given requirements specification. To that end, QAssist provides support for mining external domain-knowledge resources. Our work is one of the first initiatives to bring together QA and external domain knowledge for addressing requirements engineering challenges. We evaluate QAssist on a dataset covering three application domains and containing a total of 387 question-answer pairs. We experiment with state-of-the-art QA methods, based primarily on recent large-scale language models. In our empirical study, QAssist localizes the answer to a question to three passages within the requirements specification and within the external domain-knowledge resource with an average recall of 90.1% and 96.5%, respectively. QAssist extracts the actual answer to the posed question with an average accuracy of 84.2%.

Original languageEnglish
Title of host publicationProceedings - 2023 IEEE/ACM 45th International Conference on Software Engineering, ICSE 2023
PublisherIEEE Computer Society
Pages1277-1289
Number of pages13
ISBN (Electronic)9781665457019
DOIs
StatePublished - 26 Jul 2023
Externally publishedYes
Event45th IEEE/ACM International Conference on Software Engineering, ICSE 2023 - Melbourne, Australia
Duration: 15 May 202316 May 2023

Publication series

NameProceedings - International Conference on Software Engineering
ISSN (Print)0270-5257

Conference

Conference45th IEEE/ACM International Conference on Software Engineering, ICSE 2023
Country/TerritoryAustralia
CityMelbourne
Period15/05/2316/05/23

Bibliographical note

Publisher Copyright:
© 2023 IEEE.

Keywords

  • BERT
  • Language Models
  • Natural Language Generation (NLG)
  • Natural Language Processing (NLP)
  • Natural-language Requirements
  • Question Answering (QA)
  • T5

ASJC Scopus subject areas

  • Software

Fingerprint

Dive into the research topics of 'AI-based Question Answering Assistance for Analyzing Natural-language Requirements'. Together they form a unique fingerprint.

Cite this