Adapting SAFT-γ perturbation theory to site-based molecular dynamics simulation. I. Homogeneous fluids

Ahmadreza F. Ghobadi, J. Richard Elliott*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

30 Scopus citations

Abstract

In this work, we aim to develop a version of the Statistical Associating Fluid Theory (SAFT)-γ equation of state (EOS) that is compatible with united-atom force fields, rather than experimental data. We rely on the accuracy of the force fields to provide the relation to experimental data. Although, our objective is a transferable theory of interfacial properties for soft and fused heteronuclear chains, we first clarify the details of the SAFT-γ approach in terms of site-based simulations for homogeneous fluids. We show that a direct comparison of Helmholtz free energy to molecular simulation, in the framework of a third orderWeeks-Chandler-Andersen perturbation theory, leads to an EOS that takes force field parameters as input and reproduces simulation results for Vapor-Liquid Equilibria (VLE) calculations. For example, saturated liquid density and vapor pressure of n-alkanes ranging from methane to dodecane deviate from those of the Transferable Potential for Phase Equilibria (TraPPE) force field by about 0.8% and 4%, respectively. Similar agreement between simulation and theory is obtained for critical properties and second virial coefficient. The EOS also reproduces simulation data of mixtures with about 5% deviation in bubble point pressure. Extension to inhomogeneous systems and united-atom site types beyond those used in description of n-alkanes will be addressed in succeeding papers.

Original languageEnglish
Article number4838457
JournalThe Journal of Chemical Physics
Volume139
Issue number23
DOIs
StatePublished - 21 Dec 2013
Externally publishedYes

ASJC Scopus subject areas

  • General Physics and Astronomy
  • Physical and Theoretical Chemistry

Fingerprint

Dive into the research topics of 'Adapting SAFT-γ perturbation theory to site-based molecular dynamics simulation. I. Homogeneous fluids'. Together they form a unique fingerprint.

Cite this