Access authentication via blockchain in space information network

Muhammad Arshad, Liu Jianwei, Muhammad Khalid*, Waqar Khalid, Yue Cao, Fakhri Alam Khan

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Space Information Network (SIN) has significant benefits of providing communication anywhere at any time. This feature offers an innovative way for conventional wireless customers to access enhanced internet services by using SIN. However, SIN’s characteristics, such as naked links and maximum signal latency, make it difficult to design efficient security and routing protocols, etc. Similarly, existing SIN authentication techniques can’t satisfy all of the essentials for secure communication, such as privacy leaks or rising authentication latency. The article aims to develop a novel blockchain-based access authentication mechanism for SIN. The proposed scheme uses a blockchain application, which has offered anonymity to mobile users while considering the satellites’ limited processing capacity. The proposed scheme uses a blockchain application, which offers anonymity to mobile users while considering the satellites’ limited processing capacity. The SIN gains the likelihood of far greater computational capacity devices as technology evolves. Since authenticating in SIN, the technique comprises three entities: low Earth orbit, mobile user, and network control centre. The proposed mutual authentication mechanism avoids the requirement of a ground station, resulting in less latency and overhead during mobile user authentication. Finally, the new blockchain-based authentication approach is being evaluated with AVISPA, a formal security tool. The simulation and performance study results illustrate that the proposed technique delivers efficient security characteristics such as low authentication latency, minimal signal overhead and less computational cost with group authentication.

Original languageEnglish
Article numbere0291236
JournalPLoS ONE
Volume19
Issue number3 March
DOIs
StatePublished - Mar 2024

Bibliographical note

Publisher Copyright:
Copyright: © 2024 Arshad et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Access authentication via blockchain in space information network'. Together they form a unique fingerprint.

Cite this