A numerical study of flow and heat transfer in rotating rectangular channels (AR = 4) with 45° rib turbulators by reynolds stress turbulence model

Mohammad Al-Qahtani*, Hamn Ching Chen, Je Chin Han

*Corresponding author for this work

Research output: Contribution to conferencePaperpeer-review

32 Scopus citations

Abstract

Computations were performed to study three-dimensional turbulent flow and heat transfer in a rotating smooth and 45°C ribbed rectangular channels for which heat transfer data were available. The channel aspect ratio (AR) is 4:1, the rib height-to-hydraulic diameter ratio (e/Dh) is 0.078 and the rib-pitch-to-height ratio (P/e) is 10. The rotation number and inlet coolant-to-wall density ratios, Δρ/ρ, were varied from 0.0 to 0.28 and from 0.122 to 0.40, respectively, while the Reynolds number was fixed at 10,000. Also, two channel orientations (β = 90° and 135° from the rotation direction) were investigated with focus on the high rotation and high density ratios effects on the heat transfer characteristics of the 135° orientation. These results show that, for high rotation and high density ratio, the rotation induced secondary flow overpowered the rib induced secondary flow and thus change significantly the heat transfer characteristics compared to the low rotation low density ratio case. A multi-block Reynolds-Averaged Navier-Stokes (RANS) method was employed in conjunction with a near-wall second-moment turbulence closure. In the present method, the convective transport equations for momentum, energy, and turbulence quantities are solved in curvilinear, body-fitted coordinates using the finite-analytic method.

Original languageEnglish
Pages533-542
Number of pages10
DOIs
StatePublished - 2002
Externally publishedYes

ASJC Scopus subject areas

  • General Engineering

Fingerprint

Dive into the research topics of 'A numerical study of flow and heat transfer in rotating rectangular channels (AR = 4) with 45° rib turbulators by reynolds stress turbulence model'. Together they form a unique fingerprint.

Cite this