TY - JOUR
T1 - A Novel Artificial Neural Network-Based Correlation for Evaluating the Rate of Penetration in a Natural Gas Bearing Sandstone Formation
T2 - A Case Study in a Middle East Oil Field
AU - Al-Abduljabbar, Ahmad
AU - Mahmoud, Ahmed Abdulhamid
AU - Elkatatny, Salaheldin
AU - Abughaban, Mahmoud
N1 - Publisher Copyright:
© 2022 Ahmad Al-AbdulJabbar et al.
PY - 2022
Y1 - 2022
N2 - This study presented an empirical correlation to estimate the drilling rate of penetration (ROP) while drilling into a sandstone formation. The equation developed in this study was based on the artificial neural networks (ANN) which was learned to assess the ROP from the drilling mechanical parameters. The ANN model was trained on 630 datapoints collected from five different wells; the suggested equation was then tested on 270 datapoints from the same training wells and then validated on three other wells. The results showed that, for the training data, the learned ANN model predicted the ROP with an AAPE of 7.5%. The extracted equation was tested on data gathered from the same training wells where it estimated the ROP with AAPE of 8.1%. The equation was then validated on three wells, and it determined the ROP with AAPEs of 9.0%, 10.7%, and 8.9% in Well-A, Well-B, and Well-D, respectively. Compared with the available empirical equations, the equation developed in this study was most accurate in estimating the ROP.
AB - This study presented an empirical correlation to estimate the drilling rate of penetration (ROP) while drilling into a sandstone formation. The equation developed in this study was based on the artificial neural networks (ANN) which was learned to assess the ROP from the drilling mechanical parameters. The ANN model was trained on 630 datapoints collected from five different wells; the suggested equation was then tested on 270 datapoints from the same training wells and then validated on three other wells. The results showed that, for the training data, the learned ANN model predicted the ROP with an AAPE of 7.5%. The extracted equation was tested on data gathered from the same training wells where it estimated the ROP with AAPE of 8.1%. The equation was then validated on three wells, and it determined the ROP with AAPEs of 9.0%, 10.7%, and 8.9% in Well-A, Well-B, and Well-D, respectively. Compared with the available empirical equations, the equation developed in this study was most accurate in estimating the ROP.
UR - http://www.scopus.com/inward/record.url?scp=85123536191&partnerID=8YFLogxK
U2 - 10.1155/2022/9444076
DO - 10.1155/2022/9444076
M3 - Article
AN - SCOPUS:85123536191
SN - 1687-725X
VL - 2022
JO - Journal of Sensors
JF - Journal of Sensors
M1 - 9444076
ER -