A New Cloud-Based IoT Solution for Soiling Ratio Measurement of PV Systems Using Artificial Neural Network

Mussawir Ul Mehmood, Abasin Ulasyar*, Waleed Ali, Kamran Zeb, Haris Sheh Zad, Waqar Uddin, Hee Je Kim*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

Solar energy is considered the most abundant form of energy available on earth. However, the efficiency of photovoltaic (PV) panels is greatly reduced due to the accumulation of dust particles on the surface of PV panels. The optimization of the cleaning cycles of a PV power plant through condition monitoring of PV panels is crucial for its optimal performance. Specialized equipment and weather stations are deployed for large-scale PV plants to monitor the amount of soil accumulated on panel surface. However, not much focus is given to small- and medium-scale PV plants, where the costs associated with specialized weather stations cannot be justified. To overcome this hurdle, a cost-effective and scalable solution is required. Therefore, a new centralized cloud-based solar conversion recovery system (SCRS) is proposed in this research work. The proposed system utilizes the Internet of Things (IoT) and cloud-based centralized architecture, which allows users to remotely monitor the amount of soiling on PV panels, regardless of the scale. To improve scalability and cost-effectiveness, the proposed system uses low-cost sensors and an artificial neural network (ANN) to reduce the amount of hardware required for a soiling station. Multiple ANN models with different numbers of neurons in hidden layers were tested and compared to determine the most suitable model. The selected ANN model was trained using the data collected from an experimental setup. After training the ANN model, the mean squared error (MSE) value of 0.0117 was achieved. Additionally, the adjusted R-squared ((Formula presented.)) value of 0.905 was attained on the test data. Furthermore, data is transmitted from soiling station to the cloud server wirelessly using a message queuing telemetry transport (MQTT) lightweight communication protocol over Wi-Fi network. Therefore, SCRS depicts a complete wireless sensor network eliminating the need for extra wiring. The average percentage error in the soiling ratio estimation was found to be 4.33%.

Original languageEnglish
Article number996
JournalEnergies
Volume16
Issue number2
DOIs
StatePublished - Jan 2023
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2023 by the authors.

Keywords

  • cloud
  • edge device
  • internet of things
  • machine learning
  • solar efficiency
  • solar energy

ASJC Scopus subject areas

  • Renewable Energy, Sustainability and the Environment
  • Building and Construction
  • Fuel Technology
  • Engineering (miscellaneous)
  • Energy Engineering and Power Technology
  • Energy (miscellaneous)
  • Control and Optimization
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'A New Cloud-Based IoT Solution for Soiling Ratio Measurement of PV Systems Using Artificial Neural Network'. Together they form a unique fingerprint.

Cite this