Abstract
It is challenging to use conventional one-variable-at-time (OVAT) batch experiments to evaluate multivariate/inter-parametric interactions between physico-chemical variables that contribute to the adsorptive removal of contaminants. Thus, chemometric prediction approaches for multivariate calibration and analysis reveal the impact of multi-parametric variation on the process of concern. Hence, we aim to develop an artificial neural network (ANN), and stepwise regression (SR) models for multivariate calibration and analysis utilizing OVAT data prepared through experimentation. After comparing the models’ performance, ANN was the superior model for this application in our work. The standard deviations (SD) between the observed and ANN-predicted values were very close. The average correlation coefficient (R2) between observed and ANN-predicted values for the training dataset was 96.9%. This confirms the ability of our developed ANN model to forecast lindane removal accurately. The testing dataset correlation coefficients (89.9% for ANN and 67.75% for SR) demonstrated a better correlation between observed and predicted ANN values. The ANN model training and testing dataset RMSE values were 1.482 and 2.402, lower than the SR values of 4.035 and 3.890. The MAPE values for the ANN model’s training and testing datasets, 0.018 and 0.031, were lower than those for the SR model. The training and testing datasets have low RSR and PBIAS values, implying model strength. The R2 and WIA values are above 0.90 for both datasets, proving the ANN model’s accuracy. Applying our developed ANN model will reduce the cost of removing inorganic and organic impurities, including lindane, and optimize chemical utilization.
Original language | English |
---|---|
Article number | 7086 |
Journal | Applied Sciences (Switzerland) |
Volume | 13 |
Issue number | 12 |
DOIs | |
State | Published - Jun 2023 |
Bibliographical note
Funding Information:This research was funded by the Deanship of Scientific Research at King Faisal University (KFU), Al-Ahsa 31982, Saudi Arabia, through Project No. GRANT 3415.
Publisher Copyright:
© 2023 by the authors.
Keywords
- artificial neural network
- contaminant removal
- lindane
- machine learning
- multivariate stepwise regression
- seagrass
ASJC Scopus subject areas
- Materials Science (all)
- Instrumentation
- Engineering (all)
- Process Chemistry and Technology
- Computer Science Applications
- Fluid Flow and Transfer Processes