A MULTI-SCALE MODEL FOR MICROSTRUCTURE EVOLUTION DURING A MULTIMATERIAL ADDITIVE MANUFACTURING PROCESS

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Powder-based additive manufacturing (AM) technologies are commonly used to fabricate intricate-shape three-dimensional (3D) composite parts. The present study provides further insights into powder melt pool behavior and microstructure evolution during additive manufacturing of Hastelloy(HX)/WC composite using sequentially coupled multi-scale models. At the macro-scale, the heat transfer model is used to predict the temperature distribution and melts pool geometry formed during laser heating of multi-material powder bed. At the mesoscale, the phase-field and heat transfer models are coupled to predict the evolution of grains during the solidification of the powder melt. The computational results are reasonably comparable to that of the experiments. It is found that an ellipsoidal melt pool shape is formed around the irradiated zone. The temperature, thermal gradient and cooling rate changes across the melt pool dimensions. Due to epitaxial growth, columnar (elongated) grains are developed near the solid-liquid interface. In contrast, equiaxed grains are formed near the top regions of the melt pool due to higher cooling rates. The elongated grains become split into equiaxed ones due to the presence of the WC particles. The presence of the larger WC particles enhances the cooling rate; thereby, resulted in grain refinement. Reducing the WC particle size still results in grain refinement due to the pinning effect on grain boundaries; however, the grain size becomes affected by the WC particle size. The inclusion of foreign particles could be used to inhibit anisotropic behavior in 3D printed parts.

Original languageEnglish
Title of host publicationAdvanced Manufacturing
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791886649
DOIs
StatePublished - 2022
EventASME 2022 International Mechanical Engineering Congress and Exposition, IMECE 2022 - Columbus, United States
Duration: 30 Oct 20223 Nov 2022

Publication series

NameASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
Volume2-B

Conference

ConferenceASME 2022 International Mechanical Engineering Congress and Exposition, IMECE 2022
Country/TerritoryUnited States
CityColumbus
Period30/10/223/11/22

Bibliographical note

Publisher Copyright:
Copyright © 2022 by ASME.

Keywords

  • Additive manufacturing
  • composites
  • grain morphology
  • microstructure evolution
  • phase-field model
  • powder bed fusion

ASJC Scopus subject areas

  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'A MULTI-SCALE MODEL FOR MICROSTRUCTURE EVOLUTION DURING A MULTIMATERIAL ADDITIVE MANUFACTURING PROCESS'. Together they form a unique fingerprint.

Cite this