Abstract
Advanced battery materials are urgently desirable to meet the rapidly growing demand for portable electronics and power. The development of a high-energy-density anode is essential for the practical application of B3+ batteries as an alternative to Li-ion batteries. Herein, we have investigated the performance of B3+ on monolayer (MG), bilayer (BG), trilayer (TG), and tetralayer (TTG) graphene sheets using first-principles calculations. The findings reveal significant stabilization of the HOMO and the LUMO frontier orbitals of the graphene sheets upon adsorption of B3+ by shifting the energies from −5.085 and −2.242 eV in MG to −20.08 and −19.84 eV in 2B3+ @TTG. Similarly, increasing the layers to tetralayer graphitic carbon B3+ @TTG_asym and B3+ @TTG_sym produced the most favorable and deeper van der Waals interactions. The cell voltages obtained were considerably enhanced, and B3+/B@TTG showed the highest cell voltage of 16.5 V. Our results suggest a novel avenue to engineer graphene anode performance by increasing the number of graphene layers.
Original language | English |
---|---|
Article number | 1280 |
Journal | Nanomaterials |
Volume | 12 |
Issue number | 8 |
DOIs | |
State | Published - 1 Apr 2022 |
Bibliographical note
Publisher Copyright:© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
Keywords
- DFT
- adsorption
- boron-ion battery
- graphene layers
- reduced density gradient
ASJC Scopus subject areas
- General Chemical Engineering
- General Materials Science