A Complete Graphical Calculus for Spekkens’ Toy Bit Theory

Miriam Backens*, Ali Nabi Duman

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

15 Scopus citations

Abstract

While quantum theory cannot be described by a local hidden variable model, it is nevertheless possible to construct such models that exhibit features commonly associated with quantum mechanics. These models are also used to explore the question of $$\psi $$ψ-ontic versus $$\psi $$ψ-epistemic theories for quantum mechanics. Spekkens’ toy theory is one such model. It arises from classical probabilistic mechanics via a limit on the knowledge an observer may have about the state of a system. The toy theory for the simplest possible underlying system closely resembles stabilizer quantum mechanics, a fragment of quantum theory which is efficiently classically simulable but also non-local. Further analysis of the similarities and differences between those two theories can thus yield new insights into what distinguishes quantum theory from classical theories, and $$\psi $$ψ-ontic from $$\psi $$ψ-epistemic theories. In this paper, we develop a graphical language for Spekkens’ toy theory. Graphical languages offer intuitive and rigorous formalisms for the analysis of quantum mechanics and similar theories. To compare quantum mechanics and a toy model, it is useful to have similar formalisms for both. We show that our language fully describes Spekkens’ toy theory and in particular, that it is complete: meaning any equality that can be derived using other formalisms can also be derived entirely graphically. Our language is inspired by a similar graphical language for quantum mechanics called the ZX-calculus. Thus Spekkens’ toy bit theory and stabilizer quantum mechanics can be analysed and compared using analogous graphical formalisms.

Original languageEnglish
Pages (from-to)70-103
Number of pages34
JournalFoundations of Physics
Volume46
Issue number1
DOIs
StatePublished - 1 Jan 2016

Bibliographical note

Publisher Copyright:
© 2015, Springer Science+Business Media New York.

Keywords

  • Categorical quantum mechanics
  • Graph states
  • Graphical calculus
  • Quantum foundations
  • Spekkens’ toy theory
  • Stabilizer quantum mechanics
  • ψ-epistemic theory

ASJC Scopus subject areas

  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'A Complete Graphical Calculus for Spekkens’ Toy Bit Theory'. Together they form a unique fingerprint.

Cite this