TY - JOUR
T1 - A comparative study for ferro particles cloaking and wetting characteristics
AU - Hassan, Ghassan
AU - Yilbas, Bekir Sami
AU - Abubakar, Abba Abdulhamid
AU - Al-Sharafi, Abdullah
AU - Al-Qahtani, Hussain
N1 - Publisher Copyright:
© The Author(s) 2024.
PY - 2024/12
Y1 - 2024/12
N2 - Ferro hydrophobic particles possess essential properties for controlling the behavior of suspended substances in water. By adjusting the concentration of these particles, the magnetic force within the fluid carrier can be modified, leading to the emergence of distinct flow structures and patterns on the water's surface. This study examines the cloaking phenomenon exhibited by different ferroparticle conditions, employing both experimental and numerical approaches. Under the magnetic influence, hydrophilic particles can attain cloaking velocities of up to 35 mm/s, while hydrophobic particles remain unaffected by the magnetic force, remaining suspended on the water's surface. Hydrophobization of ferroparticles not only decreases their water-cloaking ability but also alters their magnetic properties. The inherent hydrophobic nature of these particles enhances water surface stability, rendering them valuable in various applications, including biomedical and self-cleaning technologies. This research holds particular significance for manipulating suspended particles in water, particularly in biomedical applications like drug delivery and tissue engineering, as well as for advancing self-cleaning technologies.
AB - Ferro hydrophobic particles possess essential properties for controlling the behavior of suspended substances in water. By adjusting the concentration of these particles, the magnetic force within the fluid carrier can be modified, leading to the emergence of distinct flow structures and patterns on the water's surface. This study examines the cloaking phenomenon exhibited by different ferroparticle conditions, employing both experimental and numerical approaches. Under the magnetic influence, hydrophilic particles can attain cloaking velocities of up to 35 mm/s, while hydrophobic particles remain unaffected by the magnetic force, remaining suspended on the water's surface. Hydrophobization of ferroparticles not only decreases their water-cloaking ability but also alters their magnetic properties. The inherent hydrophobic nature of these particles enhances water surface stability, rendering them valuable in various applications, including biomedical and self-cleaning technologies. This research holds particular significance for manipulating suspended particles in water, particularly in biomedical applications like drug delivery and tissue engineering, as well as for advancing self-cleaning technologies.
KW - Ferroparticles
KW - Hydrophobic
KW - Self-cleaning
KW - Water cloaking
UR - http://www.scopus.com/inward/record.url?scp=85198619827&partnerID=8YFLogxK
U2 - 10.1038/s41598-024-66944-8
DO - 10.1038/s41598-024-66944-8
M3 - Article
C2 - 39009612
AN - SCOPUS:85198619827
SN - 2045-2322
VL - 14
JO - Scientific Reports
JF - Scientific Reports
IS - 1
M1 - 16292
ER -