Project Details
Description
Recent climate changes cause regular dust storms and dust settlements over surfaces have
adverse effects on energy harvesting devices such as photovoltaic panels. In this case, the
device efficiency and outpower degrade with time and, in some cases, regaining device
performance becomes challenging. Although several methods have been proposed for
cleaning the dusty surfaces, the cost-effective method of dust mitigation from the surfaces
becomes challenging. One of the cost-effective methods is the self-cleaning of dusty
surfaces. Since the dust particles vary in size and chemical composition, the adhesion force
created between the dust particle and the surface changes with the type of the particle. To
reduce the adhesion force between the dust particle and the surface, surface texturing at
micro/nanoscale becomes favorable; in which case, the contact area between the particle and
surface becomes small. Moreover, lowering the free energy of the contacting surface
contributes to the reduction of the adhesion force. Hence, surface topology and free energy
become critically important for minimizing adhesion force between the dust particles and
the settled surface. This arrangement gives rise to the hydrophobic texture characteristics
over the surface. In addition, liquid droplet adhesion over such surfaces becomes
considerably small and droplet motion changes from sliding to rolling over the surface. In
the present study, dust mitigation from optically transparent surfaces is considered via using
rolling water droplets. The physical and chemical properties of the environmental dust are
examined and the dust mitigation processes by the rolling droplets over the hydrophobic
surfaces are investigated. The glass surfaces are hydrophobized through the deposition of
functionalized silica particles. Since the internal fluidity of droplet fluid remains important
for dust mitigation, thermal analysis is carried out including heat transfer within the droplet
fluid and across the hydrophobic film. 3 and 2D dimensional formulations are considered for heat transfer analysis inside the droplet fluid. Since the hydrophobic film thickness is in
micro-size, microscale heat transport analysis incorporating the phonon transport is carried
to determine the amount of heat transferred across the hydrophobic film. The droplet motion
on the inclined hydrophobic surface is evaluated using the high-speed camera. The pinning
and retarding forces associated with the rolling water droplet are formulated and computed
using the experimental data. The assessment of the environmental impact of the
hydrophobizing process is evaluated via Life Cycle Assessment
Status | Finished |
---|---|
Effective start/end date | 1/07/21 → 1/01/23 |
Fingerprint
Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.